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ABSTRACT 

Visual analysis is the “Gold Standard” for single-subject data because of two assumptions: a low 

Type I error rate and consistency across raters.  However, research has shown it less reliable and 

accurate than desired.  Autocorrelation, variability, trend, lack of obvious mean shift, and 

differences in the physical presentation of graphs contribute to inconsistencies and higher error 

rates.  Statistical analysis has been advocated as a judgmental aid to visual analysis, but an 

appropriate statistic has not been found.  In the present study, the accuracy of Hierarchical Linear 

Modeling was compared to raters’ visual analysis of previously published data using Receiver 

Operating Characteristic curves.  The statistic was established as a potentially useful judgmental 

aid; however, definite conclusions were hindered by low power. 
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INTRODUCTION 

Single-subject design exposes one individual (or several individuals, each serving as their 

own control) to different conditions of an independent variable and compares changes in a 

dependent variable across those conditions.  Most designs begin with a baseline condition where 

the dependent variable is measured in the absence of any manipulation of the independent 

variable.  Then, subsequent intervention phases involve some implementation of the independent 

variable while continuing measurement of the dependent variable (Kazdin, 1982).  The baseline 

condition serves as a way to predict how the dependent variable would continue to appear if no 

independent variable was introduced.  A comparison can be made between the baseline 

prediction and the intervention phase to see if the dependent variable continues in the same 

manner as the baseline phase or if it changes in some way with the manipulation of the 

independent variable.  Most researchers and practitioners using single-subject designs visually 

analyze their data to determine if the dependent variable changes significantly across conditions.  

Researchers graph the data, and believe that if a change occurred, it should be obvious and 

noticeable in graph form (Kazdin, 1982).   

Baer (1977) put forth the theoretical argument that visual analysis is superior to statistical 

analysis of single-subject data because of the different error rates associated with each analysis.  

The strength of visual analysis, for Baer and many other researchers, is the presumed 

conservative nature of visual analysis.  Because changes in the dependent variable must be 

obvious and noticeable in graph form, researchers inspecting graphed data are less likely to 

notice subtle changes and should only conclude that dramatic differences are significant.  This 

conservativeness would equate to lower Type I error, as researchers would be less likely to 

conclude incorrectly there was a significant change because they would only notice large, 
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clinically significant effects.  In contrast, statistical analysis of the data might rate subtle changes 

as clinically significant even though there may have been no functional change in the dependent 

variable, leading to higher Type I error.  Although the true Type I error rate cannot be calculated 

for single-subject designs, Baer states that the rate is “clearly much smaller than 0.05” – the 

accepted rate for statistical analysis of effectiveness (1977, p. 169).  Baer does concede that a 

lower rate of Type I error would lead to a higher rate of Type II error (concluding there was no 

effect of the independent variable when there really was an effect), but Baer considers this a 

strength of visual analysis because any independent variables found to have an effect on behavior 

would be generally more “powerful, general, and dependable” than potentially weaker 

independent variables rated effective by statistical analysis (1977, p. 171). 

Another presumption many researchers make about visual analysis is the consistency of 

judgments across different raters analyzing the same data set.  If an effect is obviously present or 

obviously absent, raters should be able to agree on its presence or absence.  These two 

assumptions – that visual analysis has a lower rate of Type I error and shows consistency across 

raters and applications – has led to it becoming the “Gold Standard” for analyzing single-subject 

data.  However, this acceptance of visual analysis as the optimal method is not because it is truly 

more reliable or error free.  Instead, it is simply the best method presently available to the field.  

In fact, studies into the consistency of visual analysis have found several factors inherent to 

single-subject data that lead to inconsistent visual analysis decisions – the presence of 

autocorrelation, variability, and trend in the data, as well as a lack of obvious mean shift across 

conditions.  Other lines of research have found that different graphing techniques can also cause 

inconsistent visual analysis.  In addition, researchers have attempted to estimate the true rate of 
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Type I error associated with visual analysis and found it to be potentially much higher than Baer 

originally assumed. 

Visual Analysis Research 

Jones, Weinrott, and Vaught (1978) conducted the first study on the accuracy of visual 

analysis judgments.  They compared the accuracy of visual analysis of significance with a 

statistical test of significance, time series analysis, using agreement indices.  The authors also 

concentrated on the relationship between autocorrelation and the accuracy of the two analyses.  

Autocorrelation is the ability to predict a data point value from the data point immediately 

preceding it.  Autocorrelation is almost always present in single-subject data (Busk & 

Marascuilo, 1988) and is a problem for many statistics because it violates the assumptions of 

independence on which they are based.  Because autocorrelation is problematic for many 

statistical analyses, the authors wanted to determine if it was also a problem for visual analysis. 

A non-random sample of graphs with “non-obvious” effects was selected from the 

Journal of Applied Behavior Analysis.  Eleven judges experienced in visual analysis were asked 

to rate the meaningfulness of change in level across fifty-eight adjacent phases using the 

categories: “yes,” “no,” and “unsure.”  Lag 1 autocorrelations were then calculated for each 

graph and placed into three categories: “low,” “moderate,” and “high.”  The graphs were also 

tested using time-series analysis, a statistic that can accommodate the presence of autocorrelation 

and tests for changes in level or trend across phases.  Statistical significance was categorized 

using the generated p values: “significant (p < 0.05),” “nonsignificant (p > 0.10),” and “unsure 

(0.05 < p < 0.10),” a category discarded from further analysis as it was considered an ambiguous 

classification.   
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For the agreement indices, the researchers compared the inter-rater agreement (IRA) of 

the panel of judges.  Calculated using the formula for agreement proportions, (PA = A/ A+D), 

IRA ranged from 0.04 to 0.79 for each graph, with a median of PA = 0.39 – a conventionally 

unacceptable level of agreement, and one demonstrating the inconsistency of visual analysis.  

The second agreement index compared the agreement between each individual judge and the 

statistical classifications.  Agreement was defined as a rater and the time series analysis both 

finding a significant change in level (“yes” and “p < 0.05”).  Raters classifying effects as “no” or 

“unsure” matched with the time series analysis classification “p > 0.10.”  For this index, the best 

individual agreement between a judge and time series analysis was PA = 0.65 (average agreement 

was PA = 0.50), indicating that each judge agreed with time series analysis at or below chance 

levels.  Therefore, not only did the group of raters disagree with each other at a high rate, time 

series analysis and visual analysis also disagreed at a high level.  

In investigating the effects of autocorrelation, the researchers found that the agreement 

between time series analysis and visual analysis was inversely related to the presence of 

autocorrelation – the more autocorrelation present in the data (shown by a “moderate” or “high” 

autocorrelation ranking), the lower the agreement level (PA = 0.50 between visual and time series 

analysis for graphs with the highest level of autocorrelation).  However, when there was little 

autocorrelation in the data, agreement rose to PA = 0.73.  Time series and visual analysis agreed 

most when there was low autocorrelation and both analyses classified the results as 

nonsignificant (PA = 0.89).  The results showed that autocorrelation was a problem for statistical 

as well as visual analysis – when autocorrelation was present, raters tended to incorrectly view 

the autocorrelation as a significant change in trend when it was simply an artifact of the data.  In 

addition, when time series found a significant effect, it was more likely to disagree with visual 
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analysis, demonstrating the more conservative nature of visual analysis.  The authors concluded 

that because of the unreliability of visual analysis (as indicated by poor IRA), while statistical 

analysis may be less conservative, it is inherently more reliable – no matter who runs the 

statistical test, the result will always be the same – and advocated supplementing visual analysis 

with an appropriate statistical test. 

A study by Matyas and Greenwood (1990) also found that both autocorrelation and 

variability had a negative effect on agreement levels.  The authors used computer-generated 

graphs, which varied in respect to the amount of autocorrelation and random variability present 

in the data, as well as in the magnitude of effect sizes generated by the data.  The amount of 

autocorrelation and variability present in the data was based on levels found in previously 

published data.  Thirty-seven raters were able to respond to the data as showing no effect, a level 

change, a trend change, a level and trend change, or some other systematic change.  Reponses 

were split into the dichotomy of “conclusion of effect” versus “no effect.”  Ratings of a change 

in level only or another type of systematic change fell into the “conclusion of effect” category, 

while those citing “no effect” were in the other.  Ratings of a change in trend or a change in level 

and trend were considered incorrect conclusions – any change in trend was due to 

autocorrelation, so raters could only correctly judge the presence of an effect by citing a change 

in level or another systematic change.   

False alarm rates (Type I errors) and miss rates (Type II errors) were calculated for all of 

the graphs as a function of the amount of autocorrelation and random variability in the graphs, as 

well as the effect size of each graph.  The results showed that false alarm rates increased with 

higher autocorrelation and more variability and were as high as 84 percent.  In contrast, there 

were very low miss rates (most less than 10 percent across varying levels of autocorrelation and 
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variability).  There was a linear relationship between autocorrelation and variability, in that false 

alarms increased with more variability, but only when autocorrelation was also present, and 

autocorrelation increased false alarm rates, but only when variability was present.  Overall, 

higher levels of autocorrelation and variability increased error rates in visual analysis. This high 

level of false alarms in visual analysis translates to a high level of Type I errors, and the authors 

concluded that perhaps visual analysis was not as conservative as generally thought.  The authors 

proposed supplementing visual analysis with statistical analysis as a way to control false alarm 

rates, especially when autocorrelation or random variability was present in the data.  

Ottenbacher (1990a) also investigated the accuracy of visual analysis.  Using six 

computer-generated graphs, Ottenbacher varied the following factors across phases: mean shift, 

variability, slope, level, overlap, and autocorrelation.  Sixty-one raters were asked to decide if 

there was a significant change in behavior across phases and could respond “yes,” “no,” or that 

they were “uncertain” about a change.  Ottenbacher reported the number of raters responding in 

each category and found the percentage of raters responding “yes,” “no,” or “uncertain” to each 

graph.  He then found the ratio of disagreement for each graph using the whole agreement 

calculation method (instead of using agreement percentages, he used disagreement percentages).  

Disagreement ranged from as high as 0.59 to as low as 0.08 for the graphs.  Then the 

disagreement ratios, along with the percentage of raters classifying results as “uncertain,” were 

correlated with the values of the graphical features manipulated across each graph.   

Variability and slope both had large positive correlations with the ratio of disagreement 

and degree of uncertainty associated with each graph (0.86 and 0.92 correlations with variability 

and slope, respectively, for disagreement, and 0.81 and 0.74, respectively, for uncertainty).  The 

correlations indicate that the more variability and slope in the data, the more raters disagreed or 
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were uncertain of intervention effects.  In addition, changes in mean shift and level had negative 

correlations with disagreement and uncertainty (-0.32 and -0.69, respectively, for variability and 

slope with disagreement, and -0.42 and -0.49, respectively, for uncertainty).  When graphs 

showed large changes in mean shift or level across phases, raters were more likely to agree that 

effects were present.  Other graphical features were only moderately correlated with 

disagreement and uncertainty, indicating they either did not have a large influence on raters or 

were overshadowed by other, more prominent features.  Ottenbacher concluded that visual 

analysis showed unreliability in the face of certain types of data patterns, and that the technique 

could be helped by using statistical analysis when results were unclear or hard to interpret. 

A study by DeProspero and Cohen (1979) also found that mean shift influenced visual 

analysis decisions, results similar to Ottenbacher (1990a).  The authors used computer-generated 

graphs divided into different sets that had varying levels of graphical features across baseline and 

intervention phases.  The manipulated features were changes in mean shift, changes in the 

magnitude of mean shift, the presence of variability, and the presence of slope.  Over one 

hundred raters were asked to judge the experimental control demonstrated by the graphs on a 

scale of 1 to 100.  While results indicated the raters used all of the graphical features in making 

their decisions, the factor affecting their decisions most was a lack of obvious mean shift – large 

changes in mean shift had very high ratings of experimental control, whereas smaller changes in 

mean shift or changes associated with more variability or trend had lower ratings.  If trend and 

variability were constant across two different graphs, the graph with the larger mean shift 

received a more favorable rating.   

Agreement between each pair of raters reviewing the same set of graphs was calculated 

using the Pearson product moment correlation.  Average agreement was 0.61 – slightly above 
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chance.  The authors also reported the range of ratings for each graph, and interestingly, the most 

“ideal” graph – one with a high degree of mean shift, little variability, and no slope or trend – 

received ratings ranging from 3 to 100 on the scale of experimental control.  While the authors 

did not report the average agreement for each graph, it can be determined from the reported 

ranges that raters were fairly inconsistent in their determinations of experimental control – the 

widest reported range was a low of 0 and a high of 100 (covering the entire scale) whereas the 

smallest range was a low of 0 and a high of 16 (a more consistent result, but one found for a very 

“non-ideal,” obviously nonsignificant graph, which raters were consistently better at judging in 

other studies).   

Mean shift and trend were also factors relating to rater agreement in Gibson and 

Ottenbacher (1988).  Twenty raters were given twenty-four computer-generated graphs and 

asked to rate the significance of performance change across phases using a six-point Likert scale.  

Each graph showed different levels of various graphical features: mean shift, variability, level, 

slope, overlap, and autocorrelation.  The results were analyzed using an interclass correlation 

approach (another approach to IRA) and the average interclass correlation among the raters was 

0.60 – again, slightly above chance levels.  Then, to compare specific features to rater judgments, 

ratings were dichotomized into “significant” (ratings of 3, 4, or 5 on the Likert scale) and “not 

significant” (ratings of 0, 1, or 2).  First, ratios of disagreement for each graph were calculated in 

the same manner as Ottenbacher (1990a).  Second, levels of “uncertainty” about data changes 

were calculated by determining the percentage of raters responding with a rating of 2 or 3 for a 

graph.  Third, “confidence” was shown by raters responding to a graph with an average rating of 

lower than 1.5 or higher than 3.5 – meaning the raters picked, on average, a score on the Likert 

scale indicating a larger degree of confidence that there was or was not an effect present.  All of 
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these measures – the ratio of disagreement, “uncertainty,” and “confidence” – were then 

correlated with the values of the manipulated graphical features using the interclass correlation 

approach. 

Results were analogous to similar studies (such as Ottenbacher, 1990a).  Higher ratios of 

disagreement correlated positively with higher levels of trend – the more trend, the more raters 

disagreed on intervention effects.  Negative correlations were found between the ratios of 

disagreement and changes in mean shift and level – the more obvious the changes in mean and 

level, the more raters agreed on an effect.  For these three features, the same correlation patterns 

were found for the measures of uncertainty: positive correlations between uncertainty and slope, 

and negative correlations between uncertainty and mean shift and level.  For the confidence 

measure, higher levels of confidence correlated with larger mean shifts and larger changes in 

level.  Changes in trend correlated with lower levels of confidence.   

Overall, these five studies have shown that visual analysis is weakened by the presence of 

autocorrelated data, data that is highly variable, or data with a definite trend.  Data with an 

obvious change in mean or level is helpful to visual analysis, but those positive factors are 

dampened if variability and trend are also present.  All of the factors, autocorrelation, variability, 

mean level, and trend, are present in most single-subject data and yet influence raters differently, 

as shown by poor IRA across all studies (the median IRA across the studies was 0.63).  Even 

studies where “ideal” graphs were used – those unlikely to be found in anything other than 

highly controlled research settings, with low variability, no trend, and large mean shifts across 

conditions – showed unreliability in visual analysis ratings across participants.  Another line of 

research has looked into the physical features of graphs and found that how a graph is physically 

presented can also influence raters’ judgments of intervention effects. 
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Knapp (1983) found that several graphical features could change visual analysis 

judgments.  Knapp created 135 graphs using three different graphing techniques (cumulative 

plot, log, or frequency polygon) and three different styles of presentation (baseline separated 

from intervention data by a space, vertical line, or connected).  Graphs could also differ on the 

amount of mean shift across the baseline and intervention phase, with nine possible levels of 

mean shift ranging from high to low.  No graph showed any trend or autocorrelation.  Raters 

were asked to judge if a change occurred across the phases using the choices “yes” or “no,” and 

they were asked not to refer back to previously rated graphs.  Each graph set was presented to 

each rater three times.  Raters agreed with themselves, i.e., gave the same graph the same rating, 

79 percent of the time.  Higher levels of mean shift were associated with more intra-rater 

consistency.  When mean shift was lower, ratings were less consistent, and graphing technique 

and presentation style had a significant effect on rater judgments.  With lower mean shift, ratings 

differed across the type of graph used as well as the type of separation between baseline and 

intervention phases, even when the data itself did not change.  In fact, raters were most likely to 

say a change had occurred across the phases if there was an obvious physical feature separating 

the phases, such as a vertical line.  Knapp concluded that when data had a non-obvious mean 

shift, changing the graphing technique or presentation style changed the visual analysis 

judgment. 

Other graphical features were investigated in two studies outlined in a 1998 article by 

Fisch.  The first, by Greenspan and Fisch (as cited in Fisch, 1998), varied the number of data 

points in baseline and intervention phases and asked raters to judge the change across phases.  

Graphs either had five data points in each phase, ten in each phase, five in the baseline phase and 

ten in the intervention phase, or vice versa.  The data were the same across the same phase types 

10 
 



www.manaraa.com

except for the number of data points (baseline and intervention phases with only five data points 

simply had the last five points from ten point baseline and intervention phases removed).  The 

raters’ judgments could be based on changes in level, trend, level and trend, neither level nor 

trend, or another type of systematic change.  False alarm rates (Type I errors) and miss rates 

(Type II errors) were calculated for all of the graphs.  Across differing numbers of data points, 

raters showed higher levels of accuracy in detecting change for the graphs with unequal data 

points across phases.  Raters were worst at identifying changes in level or trend in graphs with 

ten data points per phase. 

Another study by Fisch and Schneider (as cited in Fisch, 1998) changed where the dataset 

was physically placed on the graph.  The data could be located toward the top (away from the x-

axis), the bottom (close to the x-axis), or in the middle of the graph.  Raters had a higher number 

of correct responses when the dataset was placed closer to the top or bottom of the graph, even 

across different types of dependent variables.  Data placed nearest the x-axis showed the highest 

proportion of correct responses.  Fisch and Schneider concluded the frame of the graph provided 

an anchor on which the raters based their decisions, allowing them to detect changes more easily.   

A further line of research was prompted because some studies found visual analysis to be 

more conservative than statistical analysis while other studies found the opposite result, leading 

to a study into the true rate of Type I error in visual analysis.  Matyas and Greenwood (1990), 

previously discussed, attempted to estimate the Type I error rate of visual analysis and found it to 

range between 16 percent and 84 percent when autocorrelation and variability were present in the 

data (as based on the false alarm rate).  However, when there was little autocorrelation in the 

data, Type I error was as little as 0 to 13 percent.  Allison, Franklin, and Heshka (1992) used this 

estimate of Type I error as the basis for a study into the true amount of Type I error associated 
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with visual analysis.  Whereas Baer (1977) assumed visual analysis was a more conservative 

approach to judging treatment effects (with a Type I error rate of less than 5 percent), Allison, et 

al., felt the way many researchers approach visual analysis inherently inflates the risk of Type I 

error.  Many researchers graph each data point as it becomes available and then base decisions 

on whether to continue, discontinue, or change the intervention on these graphs.  Named 

“Response-Guided Experimentation” by Edgington, the authors felt this approach would inflate 

Type I error.   

To estimate this inflated Type I error rate, the researchers first decided on a 10 percent 

error rate as a conservative estimate of error in data with little autocorrelation or variability 

(again, based on the range of error rates for low-autocorrelated data found in Matyas and 

Greenwood).  Then, the authors decided that a researcher making a decision about his data (that 

is, using Response-Guided Experimentation) over the course of ten data points might inspect the 

data at every other data point.  Therefore, the researcher would make a decision about the 

treatment five times over the course of the ten data points.  Based on Allison, et al.’s 

conservative estimate, the researcher would have a 10 percent potential error rate for each time a 

decision was made.  Because the researcher could possibly make an incorrect decision five times 

total, with a 10 percent chance of an error each time, the real rate of Type I error across the entire 

dataset would increase to 25.9 percent.  This Type I error rate given by the authors is much 

higher than the original “conservative” estimate provided by Matyas and Greenwood (10 

percent) and even higher than the error rate touted by Baer (less than 5 percent).  While 

acknowledging the estimate is simply plausible, and not a concrete pronouncement of the Type I 

error rate associated with visual analysis, the authors were still able to show that the Type I error 

rate may not be as small as originally believed.   
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Based on the above research, under certain conditions visual analysis is neither as reliable 

nor as accurate as desired.  Factors frequently present in single-subject data – autocorrelation, 

variability, trend, and a lack of obvious mean shift – all contribute to inconsistent visual analysis.  

Visual analysis can be influenced by extraneous factors, like the physical presentation of data, 

and error rates may be much higher than would be acceptable to most researchers – perhaps as 

high as 25 percent.  These considerations have led many researchers to advocate the use of a 

judgmental aid when conducting visual analyses of data.  Judgmental aids are “stimulus-

simplifying techniques and their products” that can supplement each other and give researchers 

and practitioners more confidence in their decisions (Michael, 1974, p. 647).   

Statistical tests are an appropriate judgmental aid to researchers using visual analysis, as 

they are perfectly reliable and consistent, no matter who is running the test, and they have a 

known level of Type I error.  They are also free from extraneous influences.  Consequently, 

visual analysis and statistical analysis could both be considered judgmental aids for researchers 

and practitioners, with each receiving balanced consideration.  Visual analysis is the aid of 

experimenter judgment.  Using visual analysis, researchers can determine if the intervention 

effect is observable while staying “close” to the dataset and the research participant.  Statistical 

analysis, in turn, is less experimenter-based, ridding decisions of the biases and extraneous 

influences associated with visual analysis.  Statistical analysis ensures the reliability and 

consistency of decisions, especially in settings where complete control is impractical or data is 

unclear and a decision about an intervention must be made regardless. 

Statistical Analysis Research 

Using statistical analysis as a judgmental aid to visual analysis has been, as previously 

stated, advocated by many researchers and several studies have investigated different statistics 
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that could be used with single-subject data.  The Jones, et al., study (1978) outlined previously 

tested the utility of time series analysis as a supplement to visual analysis.  However, the authors 

found time series analysis only agreed, at best, with visual analysis judgments 65 percent of the 

time.  In fact, across all of the raters in the study, time series analysis showed better agreement 

with visual analysis when changes in the data were deemed nonsignificant by both tests.  

However, if raters are able to see clearly that the data did not change significantly, they really 

have no need for a supplement statistical test.   

Ottenbacher (1990b) tested the Split-Middle Trend statistical analysis against raters’ 

visual analysis judgments.  The Split-Middle Trend is a celeration line approach generating a 

trend line based on the first data phase, normally baseline.  If there is a change in performance 

across the phases, the proportion of data points above and below the line in the treatment phase 

will be different from the proportion above and below the line in the baseline phase.  While not a 

strictly statistical test, the difference in proportion is compared to a statistical probability 

estimate of that difference occurring.  Ottenbacher conducted this study in the same manner as 

his other 1990 study and his 1988 study with Gibson.  He found that while IRA for the visual 

analysis judgments was near chance (an IRA consistent with other research), the statistic agreed 

with visual analysis slightly less than chance – 0.46 (calculated using the point-to-point method).  

Ottenbacher also used Contingency Probabilities and found visual analysis, as compared to the 

Split-Middle Trend, had a sensitivity of 0.50 and a specificity of 0.38 – both very low values. 

Park, Marascuilo, and Gaylord-Ross (1990) tested the agreement between visual analysis 

judgments and Edgington’s Randomization test.  The authors presented forty-four randomly 

selected graphs from the Journal of Applied Behavior Analysis to five raters.  The raters were 

instructed to judge the significance of change across phases in the graphs using the categories 
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“significant,” “nonsignificant,” and “unclear.”  Inter-rater agreement was an average of PA = 0.60 

(again, slightly above chance, but consistent with previous findings).  Overall, the raters detected 

48 percent of the significant effects present in the graphs.  This finding surprised the authors 

because all of the phase changes had been previously found to be significant enough to warrant 

publication.   

Fifteen of the graphs with a sufficient number of data points were subjected to a 

Randomization test.  Randomization tests require that the intervention phase is begun at a 

random point in a study, but the introduction of the intervention is limited to a random point that 

ensures at least five baseline data values are collected while guaranteeing at least five 

intervention values will be collected (so in a study measuring the dependent variable twenty 

times, the intervention must be started within the interval of the sixth and sixteenth 

measurement).  The test calculates the actual mean difference between baseline and intervention 

phases as well as all possible permutations of mean differences (i.e., all mean differences that 

could be found if the intervention was introduced at every other possible point within the interval 

of the sixth and sixteenth measurement).  Then, each possible mean difference equal to or larger 

than the actual mean difference is tallied (including the actual mean difference) and divided by 

the total number of potential mean differences (in the twenty data point example, there are ten 

possible mean differences and one actual mean difference, for a total of eleven).  The resulting 

number gives a p value which indicates the probability the actual mean difference found was due 

to chance (Edgington, 1992).   

  Agreement between rater judgments of these graphs and the Randomization test was PA 

= 0.80.  Most of the agreement stemmed from agreement about the non-significance of phase 

changes (67 percent).  Agreement about the significance of phase changes was less important to 
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the overall agreement rate (13 percent).  However, IRA for these fifteen graphs was PA = 0.81.  

Five raters agreed on the tested graphs as a group at the same rate as the randomization test 

agreed with the raters – so it seems that instead of adding a statistical test to the data, a researcher 

could simply ask four colleagues to visually analyze a dataset.  Both methods would have the 

same chance of agreement with the researcher’s original decision. 

Stocks and Williams (1995) studied the accuracy of t tests of mean differences and 

piecewise regression against visual analysis judgments of over two hundred raters.  The authors 

fabricated graphs with and without celeration lines and compared raters’ judgments of a 

systematic change across the phases to the appropriate statistical test of those phases (t tests 

when no trend was present in the data according to a linear regression and piecewise regression 

when there was trend present).  Visual analysis judgments were based on a 10 percent probability 

that the change was due to error.  Because the graphs had been intentionally created to show the 

presence or absence of systematic changes, the authors were able to compare the classification 

accuracy of rater judgments and the statistical tests.  Overall, the statistics were better at 

classifying significant effects than raters, with raters being poor at detecting even large changes 

across phases (“large” defined as a difference of more than one standard deviation).  However, 

when raters were given celeration lines to help their decisions, the advantage of statistical 

analysis all but disappeared. 

A study by Ma (2006) attempted to develop a statistic similar to the Percentage of Non-

overlapping Data (PND) approach that overcomes some of the limitations of PND calculations.  

Ma’s Percentage of Data Points Exceeding the Median of Baseline Phase (PEM) uses the median 

baseline data point to create a line where data values have an equal chance of falling above and 

below the line and extends the line into the treatment phase.  Then, the percentage of data points 
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in the intervention phase falling above (or below) the line can be calculated.  If the percentage 

deviates significantly from 50 percent, there is a significant effect of treatment, and effect sizes 

can be generated from the deviation.  To test the viability of the PEM approach, Ma used 

previously published data from multiple behavioral journals and coded the original authors’ 

analysis of graphs into three categories – a “moderate effect,” “noticeable effect,” or “little effect 

or improvement,” and correlated the findings of the PEM approach with these original visual 

analysis judgments.  Using the Spearman correlation with the change across a pair of phases as 

the unit of analysis, the PEM approach correlated with original judgments 0.57.  While PEM 

performed slightly better than PND (with a correlation of .49), the correlation is not high enough 

to warrant PEM taking the place of visual analysis, especially when basing important decisions 

on data judgments. 

A 2006 study by Brossart, Parker, Olson, and Mahadevan attempted to create guidelines 

for using several different types of statistical tests as a supplement to visual analysis.  The 

authors had fifteen raters make decisions about the effectiveness of interventions using 

computer-generated graphs.  The raters based their decision on a five-point Likert scale.  For 

each graph, an average rating of 1.0-2.9 was considered “Not Effective,” ratings of 3.0-3.5 were 

considered “Somewhat Effective,” and an average rating of 3.6-5.0 was considered “Very 

Effective.”  Inter-rater agreement was calculated using inter-item analysis, with the raters as 

“items,” and was 0.89.  Agreement between individual raters and the entire group was an average 

of 0.58, a result analogous to previous research.   

Statistics tested included the Binomial Test on Extended Phase A Baseline – a measure of 

growth, the Last Treatment Day test – a measure of final level, Gorsuch’s Trend Effect Size – a 

test of mean differences that controls for “expected” growth, the Center Mean plus Trend Model 
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– a test of mean differences that partials out overall trend, and Allison, et al.’s Mean plus Trend 

Model – a test of mean differences and growth over the intervention phase only.  Effect sizes 

were generated for each graph using each statistic.  The effect sizes generated by each statistic 

were then divided into three categories based on the visual analysis judgments.  The first 

category contained the effect sizes for graphs rated “Not Effective” by raters, the second 

contained the effect sizes associated with “Somewhat Effective” ratings, and the third contained 

the “Very Effective” graphs.  In this way, the authors were able to establish the effect sizes for 

each statistic that should be expected for a graph demonstrating a particular level of effectiveness 

as judged by visual analysis.  Using these guidelines, data subjected to the statistics would 

generate effect sizes and researchers would know what general level of visual analysis would 

correspond to that effect size, without necessarily needing a high level of experience and ability 

in visual analyzing data.  In addition, researchers unsure of their visual analysis decisions would 

be able to generate an effect size and see if it agreed with their decision about the significance of 

change across phases. 

Problems and Limitations of Previous Research 

These studies demonstrate that researchers have attempted to identify statistics that could 

be useful supplements to visual analysis, a clear need in single-subject research.  However, while 

many of the results were promising, all of the studies had limitations.  Some of the studies tested 

statistics inappropriate or infeasible for single-subject data.  Others had limitations inherent to 

the studies themselves.  In addition, the research outlining the inconsistencies and problems 

associated with visual analysis also contains several problems and limitations.  Most of these 

problems are design issues that could be improved.  The following is a list of the problems and 
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limitations of the previous studies into visual analysis, followed by an explanation of the 

problems and limitations of research into potential statistical analyses. 

Most of the research into visual analysis used fabricated, computer-generated data 

(DeProspero & Cohen, 1979; Gibson & Ottenbacher, 1988; Knapp, 1983; Matyas & Greenwood, 

1990; Ottenbacher, 1990a).  The authors chose to generate graphs fitting their conceptions of 

various data types – either data varied across different parameters, such as variability and level of 

mean shift, or data featuring only one type of parameter change, such as graphs showing a 

change in trend only (i.e., Fisch, 1998; Matyas & Greenwood, 1990).  Most of these fabricated 

graphs also included little to no context for the data; in fact, several raters in the DeProspero and 

Cohen study (1979) refused to participate as they felt the rating task was “inappropriate” without 

context.  Many of the studies, those using fabricated graphs and those using previously published 

data, used AB graphs with only one baseline and one intervention phase (Gibson & Ottenbacher, 

1988; Knapp, 1983; Matyas & Greenwood, 1990).  Most of the researchers justified the use of 

AB graphs because they argued that the basic AB design was the “building block” for all other 

research designs.  However, when combining computer-generated data with basic AB designs, 

raters ended up judging graphs rare in real-world settings. 

Sample sizes varied across all of studies.  For the rater sample sizes, there was a range of 

11 to 108 raters, with a median of 36.  For the graph sample sizes, there was a range of 6 to 147 

graphs, with a median of 24.  Several of the studies, including the Ottenbacher (1990a) study that 

used only six graphs total, were limited to samples smaller than many researchers would desire.   

In addition to using smaller sample sizes, some of the studies deliberately used 

inexperienced raters (Gibson & Ottenbacher, 1988; Ottenbacher, 1990a).  Both of these studies 

discussed the use of inexperienced raters as a limitation of their findings, but argued that general 
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practitioners of visual analysis would probably have the same level of experience with visual 

analysis judgments as their raters.  The authors make a reasonable argument; however, when 

trying to prove or disprove the accuracy of visual analysis, raters experienced in making these 

judgments would be the most sound group to sample.  In contrast, the Jones, et al. (1978) study 

used experienced raters, but deliberately chose previously published graphs with “non-obvious” 

effects (the authors’ own words).  In trying to prove or disprove the accuracy of visual analysis, a 

better graph sample would be representative and include obvious and non-obvious effects, 

instead of deliberately making rater judgments difficult.  

Several of the studies showed ambiguity in the type of response required from raters.  

Terms were rarely defined.  Some studies asked raters to judge graphs based on discrete 

categories of “yes,” “no,” “unsure,” “significant,” “nonsignificant,” while others relied on Likert 

scales.  DeProspero and Cohen (1979) used a 100-point scale with no guidelines on which raters 

could base their judgments.  In addition, the actual judgment question varied across the studies.  

Jones, et al. (1978) asked participants to rate if there were “meaningful changes” across phases, a 

consideration involving social validity, while DeProspero and Cohen (1979) asked participants to 

rate the graphs’ “demonstration of experimental control.”  Knapp (1983) required raters to 

simply judge if “a change occurred,” while Gibson and Ottenbacher (1988), Ottenbacher 

(1990a), and Park, et al. (1990) asked raters if a “significant change in performance” occurred 

across phases.  Stocks and Williams (1995) asked how “reasonably certain” raters were that a 

systematic change occurred across phases, and defined “reasonably certain” as a 10 percent 

probability that the change was due to error.  These researchers often effectively gave raters a 

task analogous to statistical judgments of change, a decision visual analysts rarely, if ever, 

consider.  Taken as a whole, the problems with previous visual analysis research can be 
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summarized as follows: previous studies used deliberately manipulated AB graphs of fabricated, 

de-contextualized data while giving often-inexperienced raters ambiguous instructions on rating 

the “meaningfulness” or “significance” of change.   

Many of the studies into potential statistical analyses share the same problems as prior 

research into visual analysis: fabricated data (Ottenbacher, 1990a; Park et al., 1990; Stocks & 

Williams, 1995), AB graphs only (Brossart et al., 2006; Ottenbacher, 1990a; Park et al., 1990; 

Stocks & Williams, 1995), and ambiguous rater response requirements (Brossart et al., 2006; 

Jones et al., 1978; Park et al., 1990; Stocks & Williams, 1995).  Two of the studies, Ottenbacher 

(1990b) and Stocks and William (1995), tested the accuracy of visual analysis against their 

chosen statistic, instead of the more appropriate approach of testing their statistic against the 

field’s “Gold Standard” of visual analysis. 

The most pressing problems associated with studies into potential statistics involve the 

statistics themselves.  Most of the statistics are either impractical or simply do not meet the 

assumptions of single-subject data.  Others are too limited in their approach.  Jones, et al.’s 

(1978) use of time series analysis is appropriate for single-subject data; however, it is limited by 

the need for 50 to 60 data points in each phase – a number rarely possible outside of strict 

behavioral research and very impractical in real-world settings.  Randomization tests, used by 

Park, et al. (1990) are also fairly impractical, in that the statistic requires that the start point of 

interventions be randomly determined.  A researcher or practitioner must be willing to accept a 

randomly decided time to implement an intervention.  In addition, Randomization tests require at 

least twenty-five data points, and both the baseline and treatment phases must contain at least 

five data points each.  
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Ottenbacher’s (1990b) Split-Middle Trend approach is also appropriate for single-subject 

data, but while it takes into account change in the proportion of data points above or below the 

trend line, it does not take into account the magnitude of those data points.  Two graphs with the 

same proportion of data points above the line in the intervention phase would be rated as equal, 

even if one graph’s data points were much further away from the trend line than the other (i.e., if 

they had a much greater magnitude).  The same holds true for Ma’s (2006) PEM test, in that it 

does not take magnitude of data points into account.  Another problem for the PEM test is a lack 

of ability to consider trend or variability in the data.   

The t tests and piecewise regressions used by Stocks and Williams (1995) require data 

with normal distributions, homogeneity of variance across phases, and the absence of 

autocorrelation.  Stocks and Williams based their fabricated data on these assumptions, but in the 

context of real-world research, those assumptions would be rarely met.  In addition, the two 

statistics are limited.  T tests can only be used when there is no trend in the data, so it can only 

measure changes in level.  While piecewise regression can consider both changes in level and 

trend, it is much less sensitive to changes in level than t tests. 

These limitations are also problems for the statistics tested in Brossart, et al. (2006).  The 

Binomial Test on Extended Phase A Baseline is a measure of trend only, whereas the Last 

Treatment Day test is a measure of final level only.  Gorsuch’s Trend Effect Size tests for mean 

differences (i.e., level) while semi-controlling for trend, and the Center Mean plus Trend Model 

tests for mean differences while completely controlling for trend.  The Allison et al. Mean plus 

Trend Model tests for a change in level across baseline and treatment, but only considers trend in 

the treatment phase.  Each of these statistics forces the user to decide whether a change in trend 

or level is more important to their decision-making.   
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Hierarchical Linear Modeling 

Previous research has shown the need for a statistical judgmental aid to visual analysis, 

and fortunately, the above limitations of previous research can be minimized through appropriate 

design changes.  The present study attempted to lessen most of these issues, and by providing 

scenarios where visual analysts could be as accurate as possible, a statistic appropriate for single-

subject data was examined as a potential complement to everyday visual analysis judgments.  

The chosen statistic, Hierarchical Linear Modeling (HLM), accommodated almost every type of 

single-subject design while controlling for the various assumptions of single-subject data.  In 

addition, a more in-depth analysis using Receiver Operating Characteristic curves (ROC curves) 

was used to provide as much information as possible about the accuracy of HLM. 

Hierarchical Linear Modeling tests for individual change over time while taking into 

account growth and initial level and can be easily computed using the HLM 6 Student Edition 

program (HLM6S, Raudenbush & Bryk, 2007).  HLM was chosen for this study for several 

reasons.  The first advantage of HLM is its ability to accommodate autocorrelation, if necessary, 

by testing and specifying the correct error term in the model equation.  The second advantage of 

HLM is it tests for change over time for level and trend, and consequently, level and trend 

together.  Other statistics previously tested against visual analysis either considered changes in 

just trend, just level, or an inadequate combination of the two (e.g., change in level and change in 

trend, but only change in trend during the intervention condition), forcing researchers to choose 

which factor was more important to study.  In addition, HLM also accounts for the initial level of 

the target behavior, which is a practical feature for a statistic meant to be usable across a wide 

range of designs and setting.  Participants receiving the same intervention but showing different 

initial levels of behavior can still be comparable.  
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The third reason to test HLM against Visual Analysis is it is usable on almost every 

single-subject design.  The basic model used in this study could be modified to accommodate 

more complicated designs.  In addition, HLM does not require a large number of data points. 

The fourth advantage of HLM is that it can accommodate missing data or unequal 

intervals between measurements – another highly desirable feature.  While not an overriding 

concern in this study, the ability to handle missing data is important for the general use of HLM.  

HLM can accommodate missing data if the data are assumed Missing At Random and the reason 

the data are missing is independent of any other data that are actually present.  The Multiple 

Model-Based Imputation procedure can be used to estimate data values and standard errors for 

missing data satisfying the Missing at Random assumption (Raudenbush & Bryk, 2002). 

Receiver Operating Characteristic Curves 

Previous research has focused on basic decision agreement between visual and statistical 

analyses.  This study used Receiver Operating Characteristic curves and Contingency Probability 

tables to allow a more in-depth analysis of results.  Receiver Operating Characteristic curves 

(ROC curves) can be calculated using a wide variety of software, such as MedCalc (Schoonjans, 

2007), PASS (Hintz, 2007), and SPSS (SPSS Inc, 2007).  ROC curves use a “Gold Standard” to 

investigate the classification accuracy of a new test and are based on dichotomies, such as 

“present” and “absent” or “significant” and “nonsignificant.”  The curve is graphed by plotting 

True Positives (Sensitivity) on the y-axis and False Positives (1 - Specificity) on the x-axis.  The 

True and False Positives are based on the classification accuracy of the new test as compared to 

the “Gold Standard,” giving an easy to visualize determinant of the accuracy of the test (Hopley 

& van Schalkwyk, 2006).   
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The better the ROC curve, the closer it will get to the upper left corner of the graph, 

meaning the test is generating more True Positives and fewer False Positives.  The more useless 

the curve (meaning the lower its classification ability), the more closely the curve will 

approximate a diagonal forty-five degree line from the lower left to the upper right of the graph.  

A curve resembling this forty-five degree line means the test is about as accurate as random 

guessing in classifying test results (Langdon, 2006).  For this study, the ROC curves tested the 

results of HLM against the results of the “Gold Standard” of visual analysis.   

ROC curves were used chosen because they allow the user to determine the cost 

associated with any point on the curve.  Cost is the level of False Positives generated by the test 

as a function of True Positives.  As long as users are willing to tolerate a pre-specified chance of 

making the wrong decision (False Positives), the curve will show where the cut-off or threshold 

for finding a certain number of True Positives lies and how many False Positives will be incurred 

when using that threshold (Schoonjans, 2006). 

There are multiple ways to quantify the results of a ROC curve.  The first is by finding 

the highest point on the curve that corresponds with a set level of cost.  This point is found by 

creating a straight line analogous to the desired cost and finding the highest point on the curve 

that meets this line.  For an equal-cost point that gives an equal number of True Positives and 

False Positives, a forty-five degree line can be used, and the highest point on the curve meeting 

this line shows the point on the graph where the test will generate the same number of correct 

decisions and false alarms.  Other lines can be used for finding the point where the test generates, 

for example, ninety percent True Positives and ten percent False Positives, or any other desired 

combination (Langdon, 2006).  

25 
 



www.manaraa.com

Another way to judge the ROC curve is to use the Area Under the Curve (AUC).  This 

number gives the percentage of tests classified correctly.  The higher the curve, the more AUC, 

and the better the test is at classifying results.  If the AUC is close to 0.5, the test is operating at 

chance levels (Hopley & van Schalkwyk, 2006).  In addition, the MedCalc software  can provide 

a p value for a given AUC indicating if the AUC is significantly different from 0.5 and is able to 

distinguish between groups accurately (Schoonjans, 2007). 

More in-depth comparisons can be made using Contingency Probability tables. These 

tables allow the classification accuracy of HLM to be presented in concrete numbers and allow 

Overall Accuracy, as well as Positive and Negative Diagnostic Likelihood Ratios to be 

calculated, which are analogous to the Type I and Type II error rates used in other statistical 

tests.  Few other studies have been able to provide a similar conclusion (for an example, see 

Matyas & Greenwood, 1990).  The Positive Diagnostic Likelihood Ratio is the odds ratio that a 

significant HLM result will be observed for an intervention rated effective compared to the odds 

the same result will be observed for a non-effective intervention – that is, the Type I error rate 

that can be expected for HLM at a certain level of visual analysis (Technologies for Health 

Project, n.d.). The Negative Diagnostic Likelihood Ratio is the odds ratio a nonsignificant HLM 

result will be found for a non-effective intervention compared to the odds the same result will be 

found for an effective intervention – that is, the Type II error rate that can be expected for HLM 

at the same level of analysis (Technologies for Health Project, n.d.) 

General comparisons can be made between AUCs, or the percentages of tests classified 

correctly if the AUCs are found to be significantly better than chance; however, it would be 

inappropriate to base concrete conclusions on these differences as the AUCs in this study were 

based on different Gold Standards because different visual analysis dichotomies were used.  
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Another approach to supplement comparisons between AUCs is to use the Contingency 

Probability tables and compare the different levels of Overall Accuracy generated by HLM.  A 

significant difference would indicate HLM is more accurate for a particular factor or visual 

analysis level.  However, Overall Accuracy would have to be weighed against considerations of 

Sensitivity and Specificity (exactly what AUCs measure), as Overall Accuracy alone can be 

artificially inflated by the prevalence rate of significant results for a particular dichotomy.  In 

comparing the accuracy of HLM across different factors and visual analysis levels, differences in 

AUCs, Sensitivity and Specificity, and Overall Accuracy must all be considered to create the 

most appropriate comparison, as neither is entirely sufficient in itself (Alberg, Park, Hager, 

Brock, & Diener-West, 2004).  

Study results were hypothesized for different levels of visual analysis and for different 

graphical features based on the different dichotomies analyzed using ROC curves.  When using 

different visual analysis judgments to generate dichotomies, ROC Curve analysis was 

hypothesized to show HLM was an accurate test when visual analysis raters were somewhat 

certain of intervention effects.  When visual analysis raters were reasonably or extremely certain 

of intervention effects, ROC curves would show HLM to be less accurate.  In addition, when the 

accuracy of HLM was compared to visual analysis ratings of different graphical features (like 

level and trend), HLM would be more analogous to visual analysis ratings when analyzing each 

feature individually than together. 
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METHOD 

Graph Selection 

 Previously published single-subject graphs were obtained from issues of psychological 

journals between January 2002 and December 2006.  The graphs were selected from the 

following journals: Behavioral Disorders, Behavior Modification, Child and Family Behavior 

Therapy, Journal of Applied Behavior Analysis, Journal of Special Education, and School 

Psychology Review.  Selecting graphs from these journals ensured the single-subject data 

covered areas of applied behavior analysis, clinical psychology, special education, and school 

psychology, making results more generalizeable. 

Graphs had to meet specific criteria to be included in the study.  The graphs had to be 

legible enough to facilitate the calculation of data point values.  The graphs also had to include a 

clear scale showing the rate or level of behavior on the y-axis and the number of sessions or time 

on the x-axis.  Graphs with unequal scale intervals were not used.  These requirements were 

consistent with other studies using previously published data, including Gresham, et al. (2004).   

The first five graphs in each article were coded according to design type and the author’s 

original interpretation of the graph.  Almost all commonly used single-subject design types were 

included across single and multiple baselines: AB, reversal (ABAB), withdrawal (ABAB), multi-

element designs, and “other” (ABCD, et cetera).  Functional Analyses were also included, for 

eleven total design types.  Changing Criterion designs were not included, as they do not contain a 

true baseline phase against which treatment effects can be compared.   

The author’s original interpretation of each graph, or “statement of certainty” was coded 

into three statement types: graphs identified as showing “unambiguous,” “clear,” or “certain” 

intervention effects (“extremely certain”), those with results considered “ambiguous,” “unclear,” 
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or “uncertain,” (“moderately certain”) and those graphs identified as showing no effect (“not at 

all certain”).  Inter-rater agreement was calculated for one-third of the coded graphs and was PA 

= 0.93. 

The complete database of graphs included 794 graphs from 268 articles.  Once the 

database of graphs was coded, a stratified random sample was used to select graphs by design 

type and the author’s statement of certainty.  Not every design type had a graph of each 

statement type (e.g., there were very few graphs coded as showing no effect, so not every 

possible design type was represented in this category).  A power analysis run on the MedCalc 

program using the “demo” mode (Schoonjans, 2007), showed approximately forty graphs were 

needed across strata for adequate power in the overall analysis of study results. After graphs 

were initially selected using the strata, additional graphs were selected from some of the strata to 

achieve the desired level of power while also forming a representative sample of graphs closely 

matching the percentages of each graph type found in the database.  There were thirty-nine 

graphs in the final sample (Table 1).  While the journals from which graphs were obtained were 

not a strata used to select the graphs, the final sample had graphs from each and the percentages 

of graphs selected from each journal approximated the percentages found in the database. 

Visual Analysis Survey 

Participants.  An email requesting survey participation was sent to 5,074 Behavior Analyst 

Certification Board (BACB) members and 189 journal board members of the journals from 

which the graphs were obtained.  BACB and journal board members were chosen because of 

their presumed familiarity with single-subject design and visual analysis.  The participant sample 

was given an incentive for participation: one randomly selected participant who completed the 

entire survey won a fifty-dollar gift card.  
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Table 1 

Sample Graphs by Type and Author Statements of Certainty 

Note.  Cells without data indicate no graphs in the database were of that graph type and certainty 
level and could not be included in the final sample.  Cells with data indicate the percentages of 
graphs in the final sample. 

Author Statement of Certainty 

Design 

type 

Not at all  

certain 

Moderately  

certain 

Extremely  

certain Total 

Single baseline     

AB 2.56% 2.56% 2.56% 7.69% 

ABAB (reversal) -- 2.56% 5.13% 7.69% 

ABAB (withdrawal) -- 2.56% 2.56% 5.13% 

ABCD, etc -- 5.13% 12.82% 17.95% 

Multi-element 2.56% 2.56% 5.13% 10.26% 

Multiple baseline     

AB 2.56% 2.56% 10.26% 15.38% 

ABAB (reversal) -- -- 2.56% 2.56% 

ABAB (withdrawal) -- 2.56% -- 2.56% 

ABCD, etc 2.56% 2.56% 5.13% 10.26% 

Multi-element -- 2.56% 2.56% 5.13% 

Functional analysis 2.56% 2.56% 10.26% 15.38% 

Total 12.82% 28.21% 58.97% 100.00%
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Materials and Procedure.  A visual analysis survey of the graphs was hosted by 

http://www.QuestionPro.com ("QuestionPro.com", 2007).  The survey included twelve 

demographic questions, two questions about survey participation, and three questions about each 

of the thirty-nine graphs.  To create the survey, each graph was reproduced using a high quality 

image and any definitions relevant to the graph were provided (e.g., baseline and treatment 

phases, dependent variables; Figure 1 provides an example).  Participants had to answer each 

question and the graphs were randomly presented. 

The three questions about each graph asked participants to judge changes in behavior in 

the graph based on changes in level, trend, and considering the graph as a whole.  The questions 

appeared as follows: 

 Based on the information provided by the graph, how certain are you that the 

intervention(s) presented caused a change in behavior? 

Considering changes in LEVEL ONLY: 

Considering changes in TREND ONLY: 

 Considering the graph as a WHOLE: 

For graphs showing Functional Analyses or Reinforcer Assessments, the question wording was 

changed to the more relevant: 

 Based on the information provided by the graph, how certain are you that the 

condition(s) presented distinguished a function for the target behavior? 

or 

  Based on the information provided by the graph, how certain are you that the 

assessment identified a preferred reinforcer? 
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The participants judged these changes using a five-point Likert scale.  The Likert scale 

values were as follows, and the scale asked about certainty to ensure raters were not deciding on 

importance (a social validity decision) or significance (a statistical decision). 

1. Not At All Certain 

2. Somewhat Certain 

3. Moderately Certain 

4. Reasonably Certain 

5. Extremely Certain 

Figure 2 shows the question and scale as administered to participants.   

 

 
 
Behavior: Digits correct on math worksheets. 
 
Baseline: Completing math worksheets without any intervention. 
 
SDS: Student verbalizations about fast and accurate performance before starting worksheets. 
 
S rformance increased in speed and accuracy by 
15% or more. 
 
SDS & Del R+: SDS & R+ condition, with the reinforcement delivered after a 1-hour delay. 

DS & R+: SDS condition, plus reinforcement when peFigure 1.  Example survey graph with definitions 

 

Figure 1. Example survey graph with definitions 
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Based on the information provided by the graph, how certain are you that the intervention(s) presented 
caused a change in behavior? 

 
 

 
Not At All 
Certain 

Somewhat 
Certain 

Moderately 
Certain 

Reasonably 
Certain 

Extremely 
Certain 

Considering changes in LEVEL ONLY *                

Considering changes in TREND ONLY *                

Considering the graph as a WHOLE *                 
 

 
Figure 2.  Graph questions 

Hierarchical Linear Modeling 

Template Overlay.  Data values were obtained from the graphs using a template overlay.  

The individual graphs were resized to fit an 8.5x11 sheet of paper with the y-axis sized to the 

appropriate inch or half-inch increment.   The template overlay was created using a transparency 

sheet and marked lengthwise at each eighth of an inch.  The overlays were then aligned with the 

zero point of the graph and the eighth-inch increments were marked starting with zero.  Each 

data point was given the raw score value of the eighth-inch line closest to the center of the data 

point.  These coded points were transformed back to the scale of the original graph using the 

following formula:  

(Range of y-axis/ Number of eighth-inch increments contained by the graph)*Raw score = 

Transformed score 

If the graph was a multiple baseline design, each individual baseline within the overall 

multiple baseline graph was coded separately.  Multiple dependent variables were also coded 

separately. The template overlay was used to ensure each graph was coded uniformly regardless 

of the scale used in the original graph.  Transforming each raw score back to the original scale of 

the graph ensured the data remained accurate. 
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Inter-observer agreement was calculated for the graphs and was PA = .96.  One-third of 

the 39 graphs had 100% interobserver agreement, and no graphs had less than 90% agreement. 

Data Analysis.  Once data values were obtained for a graph, they were analyzed using a 

Level 2 model with the program HLM6S (Raudenbush & Bryk, 2007).  The Level 1 equation 

focused on individual change over time.  The Level 2 equation tested for change over time as a 

function of condition (baseline and intervention) for both level and trend.  These values were 

allowed to vary randomly.  The model below was used for basic single-baseline AB graphs, and 

was modified to accommodate designs beyond this level. 

Level 1 Model: 

Yi = β + tx + e 

Yi = individual graph, β = y-intercept, t = trend, x = constant (time), e = error 

Level 2 Model: 

Level: β = condition + e 

Trend: t = condition + e 

 All of the graphs were analyzed using this Level 2 model.  Multiple baseline graphs were 

run in sequential order (e.g., a graph with two baselines, each with one baseline and one 

treatment condition, was run in the order A1B1A2B2).  A more complex Level 3 model was 

considered to analyze the multiple baseline graphs, but was found to be incompatible with the 

graph types in the sample. 

For this study, the initial level of behavior (β) was centered at the mean of each baseline 

and treatment phase.  The y-intercept was defined this way so there was a standard initial level of 

behavior for all of the graphs.  Centering the y-intercept gave HLM the highest probability of 

achieving comparable results across graphs. 

Several error terms (e) were tested to determine which fit each graph’s individual data 

best.  The first error term, the First-Order Autoregressive model, assumed error was independent, 
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and autocorrelation or covariation might have been present in the data.  This model specified that 

any data point depended on the preceding data point and incorporated this assumption into the 

calculation of the deviation between predicted values and model outcomes.  The second error 

term, the Homogeneous error model, assumed equal variances at each time point and that all 

covariances were equal.  This model did not factor in autocorrelation, and was a simpler model 

based on fewer underlying parameters.  In both models, the overall HLM model was translated 

into the framework of Structural Equations Modeling and covariance was incorporated into the 

error term (Raudenbush & Bryk, 2002). A third potential error term, the Unrestricted model, was 

not used because the large number of data points required for this model rendered it unable to 

process the small number of data points associated with each graph. 

HLM6S found the best error model for each graph’s data by determining model fit, or the 

estimated deviance and degrees of freedom associated with each model.  The best model was the 

one with the least deviance (indicated by the lowest deviance value) and the most degrees of 

freedom.  HLM6S compared the difference in the deviance of each model to percentiles from a 

chi square distribution table as a function of the difference between the degrees of freedom.  A 

significant p value given by the program indicated which model was a better fit to the data, and a 

p value not meeting the required significance level indicated the simpler error model (the 

Homogeneous model) was an appropriate predictor of model outcomes.  Therefore, the 

Autoregressive model was used only when a significant p value indicated it was a better fit.  If 

the p value showed the models were not significantly different, or if the Homogeneous model 

was a significantly better fit, that model was used instead. 

To determine whether each graph showed a significant change in behavior across 

conditions, HLM6S performed a significance test for changes in level and trend.  For either to be 
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considered statistically significant, HLM had to show specific results.  For the first factor, level, 

to be significant, conditions had to have statistically different levels, p < 0.05.  If the test 

revealed they were not significantly different, then there was no treatment effect on level in the 

graph, p > 0.5.  For the second factor, trend, conditions had to have significantly different trends, 

p < 0.05.  If HLM revealed they were not different, the results meant there was no trend across 

the conditions or statistically there was the same level of trend across conditions, p > 0.05.  

Therefore, for each graph, HLM showed whether there was a difference across conditions for 

level, trend, and as a result, the third factor of both level and trend together (the graph as a 

whole).  For the graph to qualify as significant as a whole, both level and trend had to be 

statistically significant, p < 0.05.  These criteria for overall significance were analogous to the 

rater’s task of judging level, trend, and the graph as a whole, ensuring the test of statistical 

significance was comparable to the visual analysis decisions. 

When graphs had multiple dependent variables, the variables were analyzed individually, 

and each variable had to meet the significance criteria outlined above for the graphs to be 

considered significant.  In addition, if the graph included multiple treatments, the significance 

test indicated if there were a significant difference between baseline and one or more of the 

treatments, but did not indicate where this difference occurred.  These general significance tests 

of treatments and dependent variables were analogous to the general conclusions given by the 

visual analysis raters. 

Receiver Operating Characteristic Curves and Contingency Probability Tables 

As previously stated, ROC curves are based on dichotomies of “significant” versus 

“nonsignificant.”  There were several potential dichotomies to test in this study based on the 
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factors level, trend, and the graph as a whole.  Each visual analysis dichotomy for each factor 

was used as the “Gold Standard” against which the classification accuracy of HLM was tested.  

The dichotomies were determined by using the average ratings given to each graph by the 

96 visual analysis raters.  Because of these averages ratings, the Likert scale values used by the 

participants had to be extended into an average rating range surrounding each Likert scale value.  

For example, an average rating of 2.5 to 3.5 was analogous to the Likert scale value 3 (Table 2).  

In the Likert scale, a rating of 1 meant the raters were “Not at all Certain” of intervention effects, 

while a rating of 5 meant the raters were “Extremely Certain.”  These values represented the 

absolute lowest and highest average rating possible.  Therefore, the range associated with these 

values was confined within the lower and upper limits of the scale, and an average rating of 1 to 

1.5 was analogous to the scale value 1, whereas an average rating of 4.5 to 5 was analogous to 

the scale value 5. 

 Five potential dichotomies were determined using the rating ranges (Table 3).  Each 

dichotomy represented the lowest visual analysis rating accepted as significant.  The significance 

criterion became more stringent as the average rating considered significant increased.  

Dichotomy 1 assumed any graph given an average rating of 1 or higher was significant by visual 

analysis standards, and all graphs met this criterion.  Dichotomy 2 would only consider graphs 

given an average rating of 2 or higher significant (because of the range associated with each 

value, this dichotomy actually encompassed graphs rated 1.5 or higher), and so on.  Dichotomy 5 

required graphs to have an average rating of at least 5, and no graphs met this criterion.   

Although five potential dichotomies were identified, only three could be analyzed using 

ROC curves.  Dichotomies 1 and 5 could be not used because these dichotomies assumed that 

either all of none of the graphs were significant.  ROC curves require at least one example of a 
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Table 2 

Likert Scale Values and Corresponding Average Rating Ranges 

Rating Scales Number of Graphs 

Verbal Label Likert Value Average Rating Range Level Trend Whole 

Not at all Certain 1 1 to 1.5 2 2 2 

Somewhat Certain 2 1.5 to 2.5 6 10 8 

Moderately Certain 3 2.5 to 3.5 12 9 10 

Reasonably Certain 4 3.5 to 4.5 8 7 8 

Extremely Certain 5 4.5 to 5 0 0 0 

Note: “Number of graphs” indicates the graphs given an average rating within a particular range. 

significant and nonsignificant test result in a potential dichotomy, and these dichotomies 

did not satisfy that condition.  Therefore, HLM could be tested against three potential visual 

analysis dichotomies for each of the three factors.  

HLM only provided one potential dichotomy (significant or nonsignificant) for level and 

trend, meaning HLM was tested only once against each visual analysis dichotomy for each 

factor.  To test HLM’s classification ability when considering only change in level, HLM was 

tested against all three visual analysis dichotomies generated by the rater’s decisions based on 

level.  The same test was used to judge HLM’s classification accuracy when considering only 

change in trend.  Changes in the graph as a whole were tested against raters’ decisions made 

considering the entire graph.  For this test of the graph as a whole, there were again three 

potential dichotomies of visual analysis against which to test HLM.  There were also four 

potential results for HLM significance, formed by combining the separate HLM 

38 
 



www.manaraa.com

Table 3 

ROC Curve Dichotomies for Visual Analysis and HLM 

  Level Trend Whole 

Potential  

Visual Analysis 

dichotomies 

(based on 

rankings) 

1: 1 (all) 

2: 1 to 1.5 vs. 1.5 to 5 

3: 1 to 2.5 vs. 2.5 to 5 

4: 1 to 3.5 vs. 3.5 to 5 

5: 4.5 to 5 (none) 

1: 1 (all) 

2: 1 to 1.5 vs. 1.5 to 5 

3: 1 to 2.5 vs. 2.5 to 5 

4: 1 to 3.5 vs. 3.5 to 5 

5: 4.5 to 5 (none) 

1: 1 (all) 

2: 1 to 1.5 vs. 1.5 to 5 

3: 1 to 2.5 vs. 2.5 to 5 

4: 1 to 3.5 vs. 3.5 to 5 

5: 4.5 to 5 (none) 

Total dichotomies 3 3 3 

 

Potential  

HLM 

dichotomies  

(based on 

significance test) 

 

Significant 

or 

Not significant 

 

Significant 

or 

Not significant 

Significant: 

Yes and yes 

or 

Not significant: 

No and no 

Yes and no 

No and yes 

Total dichotomies 1 1 1 

judgments of the graph as a whole (both level and trend significant, neither level nor trend 

significant, level significant and not trend, or trend significant and not level), but only one was 

considered significant – the conclusion that both level and trend were significant.  The other 

three possibilities were all considered nonsignificant.  Therefore, even when considering the 

graph as a whole, there was still only one dichotomy for HLM.   
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Once each HLM dichotomy was tested against its relevant visual analysis dichotomies, 

more in-depth analyses were generated for specific dichotomies using Contingency Probability 

tables if the ROC curve analysis revealed that HLM was significantly more accurate than chance 

(i.e., if the AUC was greater than and statistically different from an AUC of 0.5).  These analyses 

included the Overall Accuracy of HLM for that particular dichotomy, as well as the Positive and 

Negative Likelihood Ratios, calculated as follows: 

Overall Accuracy =  

(TP + TN) / (TP + FP + TN + FN) 

 

Positive Diagnostic Likelihood Ratio = 

[TP / (TP + FN)] / [FP / (FP + TN)] or Sensitivity / (1-Specificity) 

Negative Diagnostic Likelihood Ratio = 

[FN / (TP + FN)] / [TN / (FP + TN)] or False Negative Rate / True Negative Rate 
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RESULTS 

Visual Analysis Survey 

Demographics.  Less than two percent of the total sample responded to the email and 

completed the survey, but of those who began the survey, 30.4% completed it, giving 98 survey 

responses.  The responses from the first two participants were dropped after their comments 

about the survey led to the survey instructions being clarified.  Therefore, there were 96 

participants.    

Average survey completion time was 36 minutes.  The majority of participants were female 

(76%) and most were between the ages of 25 and 34 (49%).  All of the respondents at least had a 

Bachelor’s degree, with most holding a Master’s degree (58%).  Almost 35% had a Doctorate. 

 Most of the participants were not journal board members (89%), but of those who did 

serve journals, the majority served the Journal of Applied Behavior Analysis (13%).  Over 30 

different journal boards were represented.  All participants held a current BACB certification or 

had been previously certified (94% and 6%, respectively).   

 Several questions asked participants about their experience with single-subject design, 

and almost 63% of participants had used single-subject designs in some capacity for over five 

years.  Ninety-eight percent had been using single-subject designs over one year.  The majority 

used single-subject designs in school (38%), clinical (31%), or research (28%) settings. 

 Participants were asked to provide any comments or suggestions they had about the 

survey, and although most participants did not provide any, several comments were consistent 

across the 29 participants who did respond.  Most of the comments were about the length of the 

survey (21%) or the difficulty of rating graphs in an artificial manner (21%) or the instructions 

were unclear (18%).  Some participants commented that the graphs appeared fake, (3%) or that 
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they did not find the definitions provided for each graph helpful (3%).  In addition, several 

mentioned the need for graph presentation to be randomized (9%), and were unaware they were 

presented randomly. 

Agreement.  Because of the large number of participants, Pearson r correlations were used to 

judge the consistency of participant ratings, in lieu of agreement calculations like proportion 

agreement or Kappa.  When judging level, r = 0.46, p < 0.05, when judging trend, r = 0.46, p < 

0.05, and when judging the graph as a whole, r = 0.43, p < 0.05.   

Ratings.  Participants judged the graphs based on level, trend, and the graph as a whole.  

Most of the graphs were given a rating of 3 across the three factors.  Because average ratings 

were used, the rating of 3 encompasses the average rating range of 2.5 to 3.5.  Only two graphs 

were rated lower than 1.5, and no graphs were rated higher than 4.5 (Table 2). 

 The range of ratings given to each graph was determined for each factor (Table 4).  For 

level, less than 3% of the 39 graphs were given a 1 or a 2 rating.  Five percent of the graphs were 

rated across the range 1 to 4.  Ninety-two percent of the graphs were rated across a range of 1 to 

5, meaning that for these graphs, at least one respondent rated the graph a 1, at least one 

respondent rated it a 2, et cetera, across the entire range possible (1 to 5).  The same pattern held 

for ratings based on trend (85% of graphs were rated across the entire range possible, 1-5), and 

for judging the graph as a whole (90% of graphs were rated across the entire 1-5 range).  

Hierarchical Linear Modeling 

 During data analysis, several limitations for HLM were found.  Simple single-baseline 

AB designs could be not analyzed, as HLM required more than one baseline and treatment phase 

(multiple-baseline AB designs contained multiple baseline and treatment phases and were 

analyzed sequentially, so HLM could accommodate that design type).  In addition, the graphs 
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Table 4 

Percentage of Graphs within each Rating Range 

Percentage of graphs rated within  range 

Rating range Level Trend Whole 

(2) 1 to 2 2.56% 2.5s6% 5.13% 

(3) 1 to 3 or 2 to 5 -- 2.56% 2.56% 

(4) 1 to 4 5.13% 10.26% 2.56% 

(5) 1 to 5 92.31% 84.62% 89.74% 

Note: Cells without data indicate no graphs were rated across the corresponding range 

needed to have a large number of overall data points or phases with at least three data points if 

there were a small number of overall data points.  Phases with less than three data points were 

analyzed successfully if the graphs had a large number of overall points.  Another limitation was 

HLM required at least some variability in the data.  HLM models variability, so data showing no 

variability violated the model and could not be tested  However, HLM did not require that all 

phases showed variability, just that variability was present in at least one of the compared phases 

(e.g., baselines could show no variability if treatment did show variability). 

 Because of these limitations, eleven graphs had to be dropped from analysis, including 

five single-baseline AB graphs, five functional analyses, and one “other” (a multiple-baseline 

A1B1/A2).  These graphs were all dropped because they only had one baseline and one treatment 

phase (HLM considers each experimental phase of a Functional Analysis as one instance of one 

treatment phase).  Therefore, 28 graphs were successfully analyzed using HLM.  Nineteen of the 
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graphs fit the Homogeneous error model, while the remaining nine were analyzed using the First 

Order Autoregressive model. 

 The required p value for graph significance was set at p < 0.05.  When considering only 

level, 2 graphs were nonsignificant, and 26 were significant.  For trend, 17 were nonsignificant 

and 11 were significant.  Because both level and trend had to be significant for the graph to be 

considered significant as a whole, a more stringent criterion, analyzing the graph as a whole 

generated the most nonsignificant graphs (18) and the fewest significant graphs (10). 

Receiver Operating Characteristic Curves and Contingency Probability Tables 

 The ROC curve analyses were generated by the MedCalc software in “demo” mode 

(Schoonjans, 2007).  Limitations of the “demo” mode did not affect ROC curve calculations.  A 

power analysis found that forty-one graphs were required to detect an AUC of 75%; however, 

only twenty-eight graphs were available for each curve.   

 ROC curves were generated for all twenty-eight graphs across the three factors and the 

three dichotomies, for nine ROC curves total.  For level, the dichotomy split at an average rating 

of 2 (therefore extending the ratings included down to an average rating of 1.5) showed HLM 

classified graphs correctly 73% of the time (AUC = 0.731, Table 5, Figure 3).  The significance 

of the AUC was p > 0.05, indicating HLM was not significantly more accurate than chance.  For 

an average visual analysis rating of 3, the AUC = .625, p > 0.05 and for an average rating of 4, 

AUC = .55, p > 0.05 (Table 5, Figures 4 and 5). 

When judging the accuracy of HLM against visual analysis judgments of trend, graphs 

considered significant at an average rating of 2 and higher generated AUC = .712.  For an 

average rating of 3, AUC = .552, and for an average rating of 4, AUC = .714.  All of these AUCs 

had a significance level of p > 0.05 (Table 5, Figure 6, 7, and 8). 
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When judging the accuracy of HLM against ratings of the graph as whole, graphs 

considered significant at an average rating of 2 and higher generated AUC = .692, p > 0.05.  For 

graphs considered significant at an average rating of 3 and higher, AUC = .622, p > 0.05.  For 

graphs considered significant at an average rating of 4 or higher, AUC = .775, p < 0.05, 

indicating that HLM was significantly better than chance at accurately classifying these graphs 

(Table 5, Figures 9, 10 and 11). 

Table 5 

AUCs and Significance Values for ROC Curves 

 AUC 

ROC curve dichotomy Level Trend Whole 

1.5 to 5 

(average rating of 2) 

 

.731 

 

.712 

 

.692 

2.5 to 5 

(average rating of 3) 

 

.625 

 

.552 

 

.622 

3.5 to 5 

(average rating of 4) 

 

.55 

 

.714 

 

.775* 

*p < 0.05  

The only significant AUC was generated when judging graphs as a whole and when using 

the most stringent visual analysis dichotomy (an average rating of 4), AUC = .775, p < 0.05.  

Therefore, a Contingency Probability table was generated for this graph only (Table 6).  

Sensitivity (true positives) was 75% at the equal cost point of the curve (6 of 8 graphs with a 

visual analysis rating of 4 or higher were correctly classified as significant by HLM) and 

Specificity (true negatives) was 80% (16 of 20 graphs with a rating lower than 4 were classified 

correctly as nonsignificant by HLM).  Overall Accuracy, calculated using the prevalence of true 
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Figure 3.  ROC curve of level: visual analysis ratings of 2 and higher vs. HLM.  The thick black 
line is the ROC curve.  The dotted black lines represent the 95% Confidence Interval 
surrounding the curve.  The grey line represents an AUC of 50%, or chance. 

 

Figure 4.  ROC curve of level: visual analysis ratings of 3 and higher vs. HLM  
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Figure 5.  ROC curve of level: visual analysis ratings of 4 and higher vs. HLM  

 

Figure 6.  ROC curve of trend: visual analysis ratings of 2 and higher vs. HLM  
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Figure 7.  ROC curve of trend: visual analysis ratings of 3 and higher vs. HLM  

 

 

Figure 8.  ROC curve of trend: visual analysis ratings of 4 and higher vs. HLM  
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Figure 9.  ROC curve of the graph as a whole: visual analysis ratings of 2 and higher vs. HLM  

 

Figure 10.  ROC curve of the graph as a whole: visual analysis ratings of 3 and higher vs. HLM  
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Figure 11.  ROC curve of the graph as a whole: visual analysis ratings of 4 and higher vs. HLM  

Table 6 

Contingency Probability Table 

 New test 
 

(HLM) 
 

Gold standard 
 

(Visual analysis) 

 
p < 0.05 

 
(significant) 

 
p > 0.05 

 
(nonsignificant) 

 
 Rating ≥ 4  

 
(significant) 

 
6 
 

(True positives/sensitivity) 

 
2 
 

(False negatives) 
 

Rating < 4  
 

(nonsignificant) 

 
4 
 

(False positives/1-specificity) 

 
16 
 

(True negatives/specificity) 
 

positives and true negatives, was 78.57.  The Positive Diagnostic Likelihood Ratio, equivalent to 

Type I error was 0.4, and the Negative Diagnostic Likelihood Ratio or Type II error, was 0.3. 
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DISCUSSION 

Visual Analysis Survey 

 Survey participants appeared to be a group highly qualified to judge single-subject design 

graphs.  The majority of participants had either a Master’s or a Doctoral degree, and had been 

using single-subject design graphs for five years or more in research and applied settings.  In 

addition, they were all formerly or currently certified as Board Certified Behavior Analysts or 

Board Certified Associate Behavior Analysts. 

The average ratings for each graph indicate a conservativeness that is often assumed with 

visual analysis but has not necessarily been found in previous research.  No graph received the 

highest average rating possible (5) and no graph received an average rating higher than 4.5, 

meaning no graphs were rated at the “Extremely Certain” level – even though 57% of the 

twenty-eight graphs included ROC curve analysis were coded as showing “unambiguous,” 

“clear,” or “certain” intervention effects by the journal article authors.  In fact, the highest 

average rating given to a graph was 4.48.  In spite of these lower than expected average ratings, 

the expected wide range of ratings given to each graph was found, with 89% of graphs rated over 

the entire range of possible ratings (1-5) across the three factors.   

Pearson r correlations of graph ratings also followed findings of previous research.  The 

moderate r obtained with the correlations indicates only a modest relationship among raters’ 

graph ratings.  Although the correlation coefficients do not indicate agreement per se, they do 

indicate that the raters did not give each graph consistent ratings.  Again, this lack of consistency 

is comparative to previous research into visual analysis agreements. 
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Hierarchical Linear Modeling 

 The study found several limitations of HLM when using single-subject design graphs.  

The most stringent limitation was the inability to analyze graphs with only single baseline and 

treatment phases, meaning that basic AB designs and Functional Analyses could not be included 

in the analysis.  Fortunately, these design types do not appear to constitute the majority of single-

subject designs used currently (combined they represent 22% of the graph database), and HLM 

was appropriate for all other design types (78% of graphs published in the selected journals from 

2002-2006).  In addition, these non-usable designs could potentially be modified by adding 

phases if authors wished to analyze their data statistically.   

The necessity of analyzing multiple baseline graphs sequentially is also a limitation.  This 

method does not completely follow the assumptions behind this design type (i.e., phases run 

more concurrently than sequentially), but HLM did give a suitable analysis of the graphs as 

determined by comparing the HLM output and the original dataset.  Future research may identify 

a way to analyze the data more comparable to multiple baseline principles. 

 In spite of these limitations, HLM was found to be a generally robust and usable statistic 

with single-subject data.  Most design types (nine of the eleven coded) could be analyzed 

appropriately with HLM, with HLM able to satisfy assumptions of the data like accommodating 

missing data or the presence of autocorrelation.  HLM was also able to accommodate varying 

numbers of phases and varying amounts of data within phases.  In addition, the twenty-eight 

graphs successfully analyzed covered a wide range of participants, behaviors, treatment types, 

and single-subject areas like clinical and school psychology and applied behavior analysis.  HLM 

may be the most appropriate and usable statistic found thus far in the statistical analysis of 

single-subject data.  
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Receiver Operating Characteristic Curves 

The limitations of HLM inherently limited the ROC curve analysis used to judge the 

accuracy of HLM against the “Gold Standard” of visual analysis.  Because graphs had to be 

excluded from the HLM analysis, fewer graphs were available to generate the ROC curves than 

required, resulting in a substantial decrease in power.  Eight of the nine ROC curves generated 

were unable to differentiate the accuracy of HLM from chance, and these findings were likely 

due to a lack of power.  This problem stemmed from the decision to use the minimum number of 

graphs necessary to generate ROC curves in the visual analysis survey and HLM analysis.  The 

maximum number of graphs participants could rate in one sitting was about 40 graphs, based on 

previous research, and this number coincided with the number required for the ROC curve 

analysis.  Additional graphs were not included in the survey because they appeared unnecessary. 

For the eight ROC curves showing HLM was not significantly better than chance, HLM 

ranged from 55% accurate to 71% accurate, with mist at 60% or better.  These AUCs show that 

HLM could be a useful tool for visual analysis judgments, if future research can satisfy the 

necessary power requirements and demonstrate HLM is better than chance at classifying single-

subject data as significant or nonsignificant.  

The ROC curve showing HLM was significantly better than chance (and, in fact, almost 

78% accurate when compared to visual analysis) shows this result is robust because it occurred 

even with very low power.  This ROC curve indicates that when judging the graph as a whole, 

and when raters are “Reasonably Certain” of intervention effects (an average visual analysis 

rating of 4), HLM is an effective analysis method that corresponds to visual analysis judgments 

on almost four of five graphs.  This agreement rate between HLM and visual analysis is higher 

than most agreement rates among raters in previous research, and is the same level of agreement 
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visual analysis raters had with themselves in the Knapp (1983) study, when raters judged the 

same graph multiple times.  At this level of visual analysis certainty, raters may or may not 

require a statistical tool like HLM (as they were “Reasonably Certain” of intervention effects), 

but for those who would like a “second opinion,” HLM could be a valuable asset to visual 

analysis judgments and possibly more consistent than asking another visual analyst.   

Future research should focus on providing enough power to the ROC curve analysis 

while maintaining a qualified sample of raters and a variety of graph types and subjects.  HLM 

may appear more or less helpful when tested against a wider range of graphs and single-subject 

datasets.  HLM has been supported in this study as a potentially useful and practical tool for 

visual analysis judgments, but its full possibilities have yet to be demonstrated because of the 

lack of power of the present study. 
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